
A best-practice approach

Simplifying
Salesforce
release
management

2 of 21

Contents

Executive summary ..3

The challenge of Salesforce deployments...4

How do people approach deployment at the moment? ...5

Never deploy ..5

Environment manager as a “gatekeeper” ...5

Change sets ..6

Force.com migration tool (Ant)...7

Release management – why is it important? ...8

How do people approach release management at the moment? ..9

Creating a best-practice release management model for Salesforce10

Finding the right balance for your business...13

How Gearset improves your release management ...14

Compare & deploy ..16

Schedule & automate ...17

Test ..17

Monitor ..17

Share & control ...17

Source control ...17

Access anywhere ...18

Secure by design ..18

Conclusion ...19

About Gearset ..20

3 of 21

Gearset has developed a best-practice release management framework to help
businesses gain the most from their Salesforce investment. From individual developers
to complex, multi-team projects, this framework provides insights into managing
risk, improving deployment success rates, and maximizing cost efficiency. With its
combination of an intuitive user interface, powerful functionality, and access anywhere,
Gearset supports every stage of this framework and provides a best-of- breed solution
for Salesforce release management.

This whitepaper explores what makes Salesforce deployments challenging, how
to structure a best-practice release management solution for your business, and how
Gearset can enable faster, more reliable deployments to your organizations.

Executive summary

Executive summary
Managing deployments is generally considered one of the most
difficult aspects of the Salesforce platform. Limited tools, complex
functionality, and direct impacts on business as usual make it error
-prone and labour intensive, particularly for larger organizations.

Gearset is changing this.

4 of 21

In fact, so many things about Salesforce are simple, quick, and effective that one area
stands out as particularly tricky: deployment.

Deployment is the riskiest point in any software development project. It represents
the moment of truth for development teams, as new features are pushed live for the
first time, and there are many ways in which it can go wrong. Organizations can be
extremely intricate, with huge numbers of objects, and dependencies between these
objects add to the complexity, with the result that it’s all too easy to make an error
during the deployment process. Forgetting to deploy just one object can potentially
cause a deployment to fail.

With infrastructure deployments, as in the typical Salesforce deployment scenario, the
stakes are even higher, as the development team needs to fix any critical problems that
arise before these problems start to interfere with people’s jobs. Failed deployments
can mean delays, missed deadlines, and late nights for the development team while
they attempt to troubleshoot the issues.

The challenge
of Salesforce deployments
With its easy-to-use point-and-click interface, Salesforce has
made application development accessible to everyone. Teams
all over the world are benefiting from the increased productivity
Salesforce brings them.

The challenge of Salesforce deployments

5 of 21

How do people approach
deployment at the moment?

Never deploy For some people, deployment isn’t a problem, because they work
directly in their production environment, which means they never
have to deploy. This can be a quick and efficient way of working
for some companies. It makes sense if, for example, you don’t
have sufficient customization of your organization to require
a development team, or if you need to keep costs to a minimum,
as there’s no need for separate development
or staging environments.

However, there’s always a risk associated with working directly
in production, because you’re effectively making changes to the
live organization that’s being used by your business on a daily basis.
This means you need to be certain that the changes you’re making
won’t break anything. In addition, there’s the possibility that if
multiple people are editing the production organization directly,
they might end up overwriting each other’s changes. There are also
limitations in terms of the changes you can make – you can’t write
Apex code in a production environment, for example.

Environment
manager as
a “gatekeeper”

At the other end of the spectrum, if there are existing applications
and users to consider, an environment manager (or release manager)
might make every developer work in their own sandbox environment.
This person will then personally manage and review every change
before it gets to production in order to ensure it won’t cause
any problems when deployed.

As teams grow in size and organizations get more complex, this
role of “gatekeeper” can become more than one person can handle,
as well as being extremely manual and tedious. And, as with any
time-consuming manual task, there’s a chance that things will
be missed and mistakes will be made.

How do people approach deployment at the moment?

Never deploy

Environment
manager as
a “gatekeeper”

6 of 21

Change sets This tool is available via the Salesforce portal. Two organizations
are configured so that they can send and receive changes between
each other, and you can look through the objects in the source
organization and choose which ones to deploy. Once the change
set has been built, it’s deployed and staged in the target org, where
you can accept the changes. The two organizations will then have
the same specific metadata described by the change set.

The change set workflow is good for quick changes and for
smaller organizations, and the graphical user interface (GUI) makes
change sets accessible to a wide range of users, which is useful
if non-developers need to implement changes. However, it can
be hard to scale when you have many developers working on a
team or many environments to manage as there’s no support for
version or source control, and accidental overwriting of changes
made by other developers is common. Destructive changes aren’t
supported, and, while it does offer a basic dependency analysis,
this can be unreliable, often flagging up false positives and making
it cumbersome for larger deployments. The change sets tool doesn’t
support any kind of governance control and there’s no way to track
who has made changes to the organization, which limits how useful
it is for auditing and reporting. But for many people, the biggest
drawback is that many metadata object types are not supported
in change sets.

Deployment teams often spend many hours running manual post-
deployment steps to finish a release. This is cumbersome, error-
prone, and entirely avoidable with the right deployment solution.

“We were exclusively using change sets and manual configuration for
deployments. Custom settings or profiles could easily take a whole deployment
window to manually deploy. If anything went wrong, or there were an excessive
amount of changes that need to be done manually, things could get problematic.”

Nadia Mayard, Salesforce Program Manager at Sutter Health

Change sets

7 of 21

“Deployments with Ant take a lot of iteration. Unless you
know exactly the patch you want to send, and the associated
dependencies, you have to go back and forth and build the
deployment piece by piece.”
Teodros Negussay, California Department of Industrial Relations

The Salesforce migration tool is based on Ant and allows finer-
grained access to the deployment process. It’s useful for automating
or controlling the process more accurately, and creating artifacts
that can be recorded or reused. Since it lacks a GUI, the Ant tool has
a steeper learning curve than change sets, but brings greater power.

The lack of GUI, however, is a barrier to many non-developers,
and running deployments requires manual editing of metadata
which is error-prone and time- consuming. Dependencies for
the deployment package must be individually identified and
incorporated, requiring a deep knowledge of Salesforce. Comparison
of files downloaded from different environments is a manual process,
usually involving a specific diff tool to bridge the gap. Cases of
deployment failures with obscure failure messages (which turn out
to be down to missing a character when copying between text files)
are all too common. As the tool is tied to a specific development
environment on a computer, the Force.com tool is not well-suited
for remote working or mobile teams, and its complexity makes
it inaccessible to the majority of Salesforce users.

To demonstrate, consider working with large-scale enterprise
applications or very complex changes to an organization.
Performing live edits of an application with a highly customized
interface in a production environment no longer makes sense.
Not only is it inherently risky, but the limitations of the web tools
may also make it simply unfeasible. Similarly, development involving
larger teams necessitates a process to manage integration testing.
Changes and fixes from multiple development environments must
pass through integration testing before they’re promoted to the
production organization. This is beyond the scope of simply using
change sets, and teams will quickly run into problems if they rely
on this tool alone. Many industries also have a legal obligation
to meet certain regulatory requirements. A clear release management
framework can help companies meet those requirements in key areas
such as user access, data availability, and increased visibility
across departments.

Force.com
migration tool
(Ant)

Force.com
migration tool (Ant)

8 of 21

to production, release management is the framework to enable effective organizational
control, and should be implemented alongside your deployment management process.

Developing applications on the Salesforce platform is fast and easy. As we outlined
in the previous section, there are a number of tools currently used to manage the
deployment of these applications, including change sets and the Force.com migration
tool. While using deployment management tools alone may be enough in some small
organizations, a more integrated approach which employs release management as well
is preferable as organizations grow in size and complexity.

To demonstrate, consider working with large-scale enterprise applications or very
complex changes to an organization. Performing live edits of an application with
a highly customized interface in a production environment no longer makes sense.
Not only is it inherently risky, but the limitations of the web tools may also make
it simply unfeasible.

Similarly, development involving larger teams necessitates a process to manage
integration testing. Changes and fixes from multiple development environments
must pass through integration testing before they’re promoted to the production
organization. This is beyond the scope of simply using change sets, and teams
will quickly run into problems if they rely on this tool alone.

Many industries also have a legal obligation to meet certain regulatory requirements.
A clear release management framework can help companies meet those requirements
in key areas such as user access, data availability, and increased visibility
across departments.

Release management
– why is it important?
Release management provides a framework to control when
and where changes are promoted from one Salesforce organization
to another. This builds on deployment management, which looks
at how to move a change from one organization to another.

Whether from a developer sandbox to integration testing or from user acceptance testing (UAT)

Release

management

– why is it

important?

9 of 21

For simple changes where the risk of interrupting business
continuity is low, features are sometimes rapidly promoted from
development to production environments, often with little concern
for release management. Many businesses take the view that release
management is not appropriate or will not deliver any value for these
simple changes.

While these kinds of changes can be quickly deployed because they
require little effort from the deployment management perspective, a
reliable and simple process for release management is still advisable.
Even basic records of deployment history and the changes released
can provide a useful source of information when tracking progress,
especially if you’re working within a large project or if a problem
arises after deployment.

When working with complex changes or multiple development
environments, basic release management is usually a requirement
due to the need for source control and integration testing.
Reintegrating changes back into the production organization adds
complexity to the development process due to the continually
moving goalposts of the production environment, and many
businesses begin to implement some sort of formal process
at this level.

With projects of this size, properly planned release management
provides a way to track changes as they’re moved between
organizations, create a clear audit trail, and reduce conflicts. Without
proper planning, however, release management can become more
of a hindrance than a benefit, slowing the development process
down and creating choke points for project progress.

How do people approach release management
at the moment?

The appropriate level of release management is heavily influenced
by the size and complexity of your development projects and the
tolerance of your business for risk.

No release
management

Basic release
management

How do people approach release management at the moment?

10 of 21

Projects involving intricate applications that affect a large number
of users often require multiple development and testing
environments, and a dedicated UAT process. These projects, running
over an extended period of time, usually involve several teams
working on different development cycles and may require several
rounds of integration testing before being deployed to production.
Due to the complexity of these projects, with development efforts
happening concurrently, release management is a complex but
essential task, and almost all businesses employ a structured
approach to support large project success.

Creating a best-practice release
management model for Salesforce
To help businesses get the most from their Salesforce investment,
Gearset has developed a best-practice model for release
management in Salesforce.

The model provides a high-level overview of organizational structure to best achieve
successful deployments which meet users’ needs, and also integrates simple
deployment management into the process using Gearset. The model can be adapted
to suit all needs, from very simple changes which require minimal release management
all the way through to complex projects with a lengthy development cycle.

The model is based around information flow between separate Salesforce
organizations with different purposes. Salesforce provides several organization types,
each with its own set of features, performance, and pricing. This model aims to provide
a guideline for achieving a balance between cost-efficiency and functionality.

Integrated release
management

Creating a best-practice release management model for Salesforce

11 of 21

Org type
Developer sandbox

Used for
Development

Developer sandboxes are isolated organizations which copy
metadata (but not production data) into a different environment
for coding and testing.

Developer sandboxes should be used for all development work,
and are completely removed from the production environment. Each
team member should have access to a copy of the metadata from
the production environment, and their own independent developer
sandbox in which they can make their changes. They may manage
this using the Salesforce portal or with local IDEs, such as Eclipse
or MavensMate. In larger projects, developers may maintain multiple
environments for this purpose, and developer sandboxes should
be linked to a source control system to allow easy promotion
to the partial copy sandbox.

Org type
Partial copy sandbox

Used for
Integration testing/QA

Partial copy sandboxes copy both metadata and some production
data, and have a larger amount of storage space to work with.
This makes them well-suited as testing environments using selected
production data.

Once development work on a feature is complete, it should be
checked in to your source control system and deployed to your
partial copy sandbox for integration or QA testing. In large teams
or projects, a process of continuous integration, whereby committed
changes are automatically built and tested, should be applied
between developer sandboxes and partial copy sandboxes for fast
and automated functional testing of features. This will allow for rapid
iteration and bug fixing on changes and minimize the risk of clashes
with other developers’ environments. Having passed testing, features
should be checked against project goals to ensure they’re meeting
customer needs before being promoted to UAT.

Dev Sandbox
(Development)

Partial copy sandbox
(Intergration testing/QA)

Full sandbox
(UAT/Staging)

Prod
(Production)

12 of 21

Org type
Full sandbox

Used for
UAT/Staging

Full sandboxes copy the whole production organization and all data.
They’re useful for coding and testing changes, and for training.

Before beginning UAT, the full sandbox organization should be
cloned back from production. This allows new features to be tested
in relation to your entire production environment, minimizing the risks
of unexpected errors or unintended effects on other aspects of the
organization. Due to the limitations on refreshing sandbox states,
this should be carried out as part of a planned testing phase, rather
than merely on the fly. Testing should cover whether the feature
meets the needs and objectives of the project and users, as well as
its stability and integration with the production environment. In the
event of any issues, the feature must return to the development and
testing process before coming back through to UAT.

Org type
Production

Used for
Production

The production environment is live and has users accessing data.

Before any feature is promoted to production, it should be functional
(integration testing), meet the needs of the users (UAT) and not
cause any disruption to the production environment (tested with real
data). To minimize disruption, deployment to production should be
made during scheduled maintenance windows, ideally when no users
are on the system. Having been through this rigorous testing, there
should be a very low chance of any unexpected errors or deployment
failures which could disrupt the business. A detailed report should be
maintained for every production deployment to aid project reporting
and in case there are any unexpected issues.

13 of 21

Finding the right balance
for your business
It may not be appropriate for your business to implement
the entire release management model described above.
Factors such as team size, budget, and organizational
complexity will affect the depth to which the model is applied.

To illustrate, let’s look at three examples using the different levels of release
management outlined in the previous section: none, basic, and integrated.

For smaller projects currently working under the ‘No release management’ approach,
it may be appropriate to skip the integration testing and UAT and simply deploy
between a developer sandbox and production. While it may be tempting to work
directly in production environments, it’s highly recommended that a development
environment is used for testing prior to promotion to production. This structure
supports rapid iteration and keeps complexity and cost to a minimum, while still
significantly reducing the risks associated with working directly
in production environments.

Teams working with several developers or under the ‘Basic release management’
approach will be using some form of source control and integration testing. In these
scenarios, a process from development sandbox to partial copy sandbox to
production (skipping the UAT phase) may provide enough structure to avoid code
duplication and conflicts, while still allowing for some level of testing and code review
prior to release.

People working in large teams, on complex projects, or on changes which affect
a majority of the user base, are likely to already be working under the ‘Integrated
release management’ approach. Projects of this nature require tracking and merging
changes from different code branches, user acceptance testing, and other involved
processes to ensure a successful release. For these teams, our model provides
a best-practice template to guide their current release management approach
The creation of an effective audit trail as a result of our model simplifies project
management and reporting while protecting data integrity.

Finding the right balance for your business

14 of 21

How Gearset improves your
release management
Gearset is a comprehensive release management solution which
streamlines deployments, reporting, and compliance for your
Salesforce environments. Designed to lower the technical barrier
to entry, it enhances team collaboration and offers orders-of
-magnitude improvements in the time spent on deployments.

“Being able to quantify the time saving
- what used to take 8 hours, now takes less
than an hour with Gearset - that’s huge,
and it really speaks for itself.”
Nadia Mayard, Program Manager, Sutter Health

“No matter how you operate, if you use
Salesforce, Gearset immediately simplifies
and expedites how you deploy.”
Alex Jones, Project Manager, Xaxis

How Gearset improves your release management

15 of 21

Customize

Automatic rollback
of changes in event of
deployment failure

Dev Sandbox
(Development)

Partial copy sandbox
(Intergration testing/QA)

Full sandbox
(UAT/Staging)

Prod
(Production)

Compare Review Deploy Track

Recover

Make changes,
push to source
control

Select source
and target orgs,
choose objects
to compare

Review results
and select objects

to deploy

Target org
updated from
source control

Deployment
reports create
an audit trail

16 of 21

Compare
& deploy

Compare any two Salesforce organizations and view line-by-line
configuration differences, giving you instant insight into the state
of your environments. Automatic XML highlighting helps you
find what you want, fast, and dependency analysis suggests
the components required for a successful deployment.

Validate your releases and deploy the changes, safe in the
knowledge that rollback is available at any time, and a detailed audit
trail of activity is maintained in the app. Full support of new, changed,
and deleted objects (destructive changes) makes Gearset powerful
yet easy to learn, and PDF deployment reports are simple to share
or incorporate into your user story tracking.

Compare & deploy

17 of 21

Schedule
& automate

Schedule deployments to coincide with maintenance windows
or sprint finishes. Email notifications keep your team in the loop with
all releases. Set up continuous integration jobs to automatically keep
two orgs in sync.

Test

Automate your unit testing, receive test failure notifications and
easily debug errors. Track code coverage change over time and
share results with your team with simple email, SMS, Slack and
Chatter integration.

Monitor
Track configuration changes being made to your orgs to prevent
accidental overwrites. Inspect day-by-day audit logs and see exactly
what changes were made, when, and by who, making managing
multiple work streams a breeze. Roll back any unwanted changes
with a couple of clicks.

Share
& control

Collaborate with team members to prepare and deploy changes more
effectively. Ensure SOX compliance with user roles and permissions,
and delegated credential management. Manage team access and
licensing self-service from the app.

Source
control

Compare and deploy from any GitHub, Gitlab or Bitbucket repository
and branch to your Salesforce organizations. Deploy files stored
locally on your machine for full compatibility with on-premise version
control or IDEs. Automate deployments from an integration branch
to your Salesforce environments with continuous integration jobs.

Schedule & automate

Test

Monitor

Share & control

Source control

18 of 21

Access
anywhere

Access Gearset on almost any device with a web browser, with
no packages to install in your orgs. Anywhere you can access
Salesforce, you can access Gearset. Gearset is built around an
intuitive, user-friendly GUI. Incredibly quick to master, you can get
straight to work whether you’re a seasoned developer or you’ve just
joined a new project. Everything is managed with just a few clicks
and there’s no need to use a command line.

Secure
by design

Data security is built into every facet of Gearset. Org access is
managed via OAuth to protect user credentials. Advanced defence-
in-depth techniques protect your metadata, including encryption
at rest and in transit. Gearset is hosted in ISO 27001 compliant
AWS datacenters that Salesforce and Heroku trust for their compute
needs, and is trusted by industry leaders in healthcare, government,
financial and education institutions around the world.

Partial copy sandbox
(Intergration testing/QA)

Full sandbox
(UAT/Staging)

Prod
(Production)

Dev

Dev

Dev

Development
cycle
Update individual dev
sandboxes and sync
to source control using
Gearset Deploy

Continous
intergration
Gearset Deploy
continually and
automatically updates
test enviroments

Deployment
to UAT
Deploy manually to UAT
using Gearset Deploy

Promotion
to production
Promote manually
to your production org
using Gearset Deploy

Access anywhere

Secure by design

19 of 21

Conclusion
This whitepaper has demonstrated the challenges that face
businesses around Salesforce deployment management,
and the approaches commonly used to manage deployments.
It then moved on to consider what release management
is, how it builds upon deployment management, the benefits
of employing it, and how businesses currently approach it.

Based on best practice, Gearset presented a framework for the release management
process, and demonstrated how the model can be modified to provide benefits
to businesses and teams of any size. Finally, we looked at how Gearset provides
a best-of-breed solution to enable effective release management through streamlined
deployments, reporting, and compliance for your Salesforce environments.

Find out more at https://gearset.com or get in touch with us at team@gearset.com.

Conclusion

https://gearset.com
mailto:team%40gearset.com?subject=

20 of 21

About Gearset
This whitepaper was written by the team behind Gearset,
the release management tool for Salesforce. The Gearset
team have decades of experience in development and
deployment across multiple platforms, including SQL
Server, Oracle, .NET, Azure, and Salesforce. We helped
build some of the leading deployment tools used by 91%
of the Fortune 100 to run their release management and
achieve world-class continuous delivery. We’re a trusted
Salesforce partner and our sole mission is to make
development on Salesforce ingeniously simple. We built
Gearset to solve the challenges Salesforce teams face
with release management. If you’re looking for a tool which
perfectly complements your new version controlled release
process, you can find more information on Gearset and
start a free 30-day trial at https://gearset.com or contact
us at team@gearset.com.

About Gearset

https://gearset.com
mailto:team%40gearset.com?subject=

	Executive summary
	The challenge of Salesforce deployments
	How do people approach deployment at the moment?
	Never deploy
	Environment
	manager as
a “gatekeeper”
	Change sets
	Force.com migration tool (Ant)

	Release management
– why is it important?
	How do people approach release management at the moment?

	Creating a best-practice release management model for Salesforce
	Finding the right balance for your business

	How Gearset improves your release management
	Compare & deploy
	Schedule & automate
	Test
	Monitor
	Share & control
	Source control
	Access anywhere
	Secure by design

	Conclusion
	About Gearset

