
1 of 31

Get your team ready for the future of DevOps

Adopting
Salesforce DX

2 of 31

Contents
Introduction.. 3

Who is this whitepaper for?.. 5

Why Salesforce DX?.. 6

What is DevOps?.. 7

DevOps and Salesforce.. 8

Salesforce DX - an overview... 10

Scratch orgs... 10

A new metadata format ... 11

The Salesforce CLI.. 11

Visual Studio Code plugins... 12

Second-generation packaging... 13

Dev Hub orgs... 14

Dependency API.. 14

DX for Salesforce DevOps.. 15

The lure of "best practice".. 15

The DevOps maturity matrix.. 16

Version control as the source of truth... 17

Salesforce DX for the whole team... 18

An example DX-based DevOps process .. 19

Source control.. 19

Development workflow... 19

Source-driven flow.. 20

Unlocked packages... 22

Release workflow and release automation... 25

Testing.. 27

Monitoring.. 27

Backup.. 27

Challenges.. 28

Conclusion.. 29

About Gearset... 30

3 of 31

Introduction

The Platform as a Service (PaaS) landscape has changed
dramatically since the launch of Salesforce in 1999. Starting out
as a Software as a Service (SaaS) company, but branching into
a pioneering PaaS with an emphasis on declarative development
and clicks-not-code philosophy, Salesforce is one of the longest-
standing PaaS platforms still around today.

Salesforce’s philosophy was to make building
easy. Software shouldn’t be complex to install,
set up, or customize. In fact, you shouldn’t
need to install software at all - it should
be available to you at the click of button
in your browser. Those traditional in-house
development teams, expensively toiling away
on complex business logic were obsolete -
business analysts, even managers, could build
line-of-business applications in a few clicks.

But a lot has changed since those early days.
While Salesforce approached the problem
from the declarative end of the spectrum,
allowing ever greater customization of
the platform via a simple user interface,
companies like Amazon were approaching
from the other direction - providing virtualized
hardware that traditional developers could
build on using their existing patterns,
practices and software stacks.

The result of these competing philosophies
wasn’t a complete convergence of
technologies - Salesforce, and platforms
like AWS and Azure, have very different
target audiences. While Salesforce was
democratizing application development and
ushering in the era of the citizen programmer,
the other players were strengthening their
appeal to the traditional developer.

Unfortunately, as the complexity of software
grows, so inevitably does that of the teams
building it and the tools required to be
successful. With the advent of Apex, and
later the acquisition of Heroku, Salesforce
acknowledged that only so much can be
achieved with the declarative approach.
Business requirements can be complicated,
and modelling complex domains requires
more flexibility than clicks-not-code affords.
Traditional development teams weren’t
dead after all.

Introduction

4 of 31

As a result of this strategy, Salesforce’s
marketing and development efforts haven’t
catered to the traditional developer. Although
the platform’s ability to support the role
has grown substantially, it’s clear from the
APIs and first-party tools that it’s not where
the bulk of the R&D dollar has been spent.

By way of example, source-driven
development has been a mainstay of
traditional platforms for decades, but it’s
relatively new to the Salesforce ecosystem
lexicon, and the fact that source code has to
be extracted from the Salesforce org, rather
than pushed to an org to define its structure
and behaviour, is an artefact of that. So
although Salesforce has facilitated business
productivity in a way that no other platform
can claim, it has under-delivered in this
specific area.

That is, until Salesforce DX. The cynical
reader could be forgiven for thinking DX
is a reactionary move driven by a failure to
acknowledge the gradual divergence of the
ideals of No Software and the practicalities
of building and maintaining complex software
systems, and to some degree that’s true. But
it’s more than that - it’s an acknowledgement
that change is necessary, that there are
already traditional development teams

building business-critical functionality
on the platform, and that these teams need
to be able to adopt industry-wide practices
that developers on other platforms have been
benefiting from. It’s paving the path trodden
by these trailblazers for teams that haven’t
been able to make that leap yet, transforming
a hard-fought expedition through the
wilderness into a stroll in the woods,
accessible to all technological backgrounds.
It’s a seismic shift in the philosophy
of development on Salesforce.

And it’s just the beginning. DX is a toolkit
to democratize modern DevOps practices
on the Salesforce platform, and today it’s
undeniably in its infancy. The low-level tools
that comprise DX cater to a niche group of
very capable early adopters who can piece
together command line tools, work through
and around any teething troubles that DX
might throw up, and feed back to the team
at Salesforce. But the DX team is iterating
quickly. They’re hungry for feedback and
picking their battles pragmatically, which
is already yielding dramatic improvements
like the automated metadata coverage report,
splitting up larger, compound objects like
custom objects and their translations,
and second-generation packaging.

Now we’ve identified the motivation for
Salesforce DX and its high-level purpose,
we come to the next question.

5 of 31

So far, we’ve established that DX caters
to the experienced developer with a strong
technical pedigree. But these developers
don’t work in isolation, and we know
Salesforce teams are made up of people
with different backgrounds and skill sets.
No matter where you fall on the scale from
no-code to all-code-all-the-time, DX will
likely impact you, potentially changing the
way you work.

With that in mind, if you’re involved in the
administration, development, maintenance,
or management of Salesforce environments,
then this whitepaper is for you. We’ll give
you an overview of Salesforce DX, an
understanding of its motivating factors
and the workflows it facilitates, practical
considerations for its adoption, and a
summary of its pros and cons as things stand
today. If you’re an admin, architect, developer
or team lead considering trialing and adopting
DX for your team, then this whitepaper
has something for you.

Who is this whitepaper for?
This whitepaper is for anybody who wants to know more about
Salesforce DX, and how it might be used to implement a DevOps
process that works for technically diverse development teams.

Who is this whitepaper for?

6 of 31

Why Salesforce DX?
Salesforce DX is a means to an end, not an end in its own right.
Your goal shouldn’t be adoption of Salesforce DX, but
to understand how it can help you achieve your development
and DevOps process goals.

DX is a toolkit that makes it easier for
Salesforce developers and teams to adopt
better DevOps practices - things like:

Release automation, including
continuous integration

Automated unit testing

Automated backup

Automated rollback, including
org change monitoring

The benefits of adopting these practices
are myriad and well understood - the result
is a happier, more engaged development
team with a tighter feedback cycle, meaning
fewer bugs, faster fixes, and drastically more
regular and reliable releases of new features.
This translates into a more effective team and
improved business outcomes.

DX isn’t a requirement of adopting these
practices. As we suggested in the previous
section, there are teams who have been
following these sorts of practices for years
using a combination of existing first and
third-party tools. DX is a concerted effort
to democratize DevOps, making these
practices accessible to more diverse teams
by refining existing tools and adding entirely
new features.

In the sections that follow, we’ll start by
talking through the principles of release
management, and discuss how the coalescing
of these under the DevOps umbrella has
changed the way teams handle deployments
and automation. We’ll then go on to discuss
how Salesforce DX fits into this picture and
what benefits it affords, how to adopt DX
as part of a multi-disciplinary team, and
finally we’ll touch on some of the current
shortcomings and open questions around DX.

Why Salesforce DX?

https://puppet.com/resources/whitepaper/state-of-devops-report

7 of 31

What is DevOps?
The meteoric rise of Salesforce has provided us with a platform
that delivers on the No Software promise.

We no longer need to deal with legacy
on-premise software with large up-front
costs, and instead have a platform that’s
easy to adopt, and grows with the needs
of your business.

There was a mistaken belief that No
Software meant there would be no need for
a solid software development lifecycle. But
Salesforce, like all technology that powers
our organizations, requires rigorous change
management to ensure that changes are
effectively communicated from the business
to the implementation team, configured and
built correctly, tested and verified to ensure
it delivers what the business originally
wanted, and finally deployed to production
in a way that bears benefit to the end users.

“Release management” is a popular term used
to describe the process of planning, building
and releasing software on Salesforce. But
with the advent of DevOps, there’s been a
subtle shift in terminology used to discuss the
operational issues of releasing software on
the Salesforce platform. The term “DevOps”,
although prevalent on other platforms for the
last several years, has only recently fallen
into common parlance in the Salesforce
development community.

These terms aren’t synonymous. Release
management encompasses a broader set
of activities than DevOps. As the name
implies, DevOps refers to the technical,
operational aspects of releasing software -
packaging, releasing and monitoring changes
through the software development lifecycle.
Release management layers the less technical
aspects of planning and managing releases
on top of this.

What is DevOps?

8 of 31

into production, fewer defects, and better
business outcomes. The non-operational
aspects of release management are well
understood, and more or less equivalent
from platform to platform. Crucially, tools
to facilitate this part of the process also
span platform boundaries - there are many
planning, management and collaboration tools
that have been refined over many years to
cater to teams of all shapes and sizes. Teams
across all software stacks and platforms are
well-served by these tools. The operational
aspects, however - those that fall under the
DevOps banner - are closely bound to their
associated technologies.

Beyond that, DevOps also has implications
of responsibility. Rather than a separate
release manager or team, DevOps comes
with the implication that the responsibility
for packaging, releasing and monitoring is
shared across the whole development team.
It also implies a heavy reliance on automation,
allowing teams to release regularly and
reliably with confidence, and much shorter
release cycles as a result. With these process
improvements, there are fewer bottlenecks
and fewer barriers to releasing software

DevOps and Salesforce

Salesforce teams are behind the industry
curve when it comes to DevOps. There are a
variety of opinions as to why, but the biggest
factor is that one of Salesforce’s strongest
selling points and early USPs was that
traditional developers and ops specialists
were unnecessary - the ethos of No Software.

Salesforce’s entire approach was different to
that of traditional technology stacks and the
cloud ecosystem that evolved around them,
and so the tools to adopt similar practices on
top of Salesforce didn’t really exist. Moreover,
the decision to adopt Salesforce is more
strategic than any other cloud provider or
tech platform - it’s a business decision and
very scarcely technically-lead, so developers
are rarely involved until later in the process.
Traditional enterprise developers haven’t been
the target audience, and Salesforce hasn’t
needed to court them as closely.

It may seem strange then that the trend
is towards DevOps. But DevOps for
Salesforce doesn’t look quite the same
as on other platforms, and this helps explain
its increasing popularity. Firstly, the well-
known Salesforce platform benefits of
agility, speed of execution, and not needing
large teams of developers still hold true -
these only start to become strained when
projects grow dramatically in complexity.
Secondly, Salesforce itself removes a lot of
the complexity you might find in DevOps on
other platforms. Managing infrastructure,
scalability, hosting, even tests - traditionally
the responsibility of ops personnel and their
chosen systems and tools - is all handled by
the platform itself. DevOps on Salesforce is a
narrow subset of DevOps on other platforms.

DevOps and Salesforce

http://ivanesalmeida.blogspot.com/2018/07/salesforce-and-devops-part-1-my-views.html

9 of 31

So what’s left within the remit of DevOps
in Salesforce? As we mentioned earlier,
there are a few key areas:

•	 Release automation, including
continuous integration

•	 Automated unit testing

•	 Automated backup

•	 Automated rollback, including org
change monitoring

Again, DX doesn’t directly perform any
of these tasks - instead, it provides some
building blocks to help you put together these
workflows yourself.

Salesforce DX - an overview

Scratch orgs

By way of example, an automated
release process might consist
of the following:

•	 A scheduling / automation server, like
TeamCity or Jenkins

•	 Your source control provider, like GitHub,
GitLab or Bitbucket

•	 Your Salesforce environments - DE orgs,
sandboxes, prod, and scratch orgs

•	 Tools like the Force.com migration
tool or the Salesforce CLI for talking to
Salesforce’s APIs, alongside the git CLI
for pushing to and pulling from your source
control system

•	 A series of bespoke scripts that pull these
disparate tools together, designed to
perform deployment-related tasks like
packaging and pushing metadata,
or running unit tests

You’ll notice that although DX makes it easier
to build this sort of solution, it’s always been
possible to build a workflow like this with
existing tools. There are several benefits DX
offers over the legacy tooling, but first, let’s
take a look at the main DX features.

10 of 31

Salesforce DX - an overview
DX consists of several key features:

Scratch orgs

Scratch orgs are ephemeral orgs. They can
be configured in terms of edition, feature
enablement, and preferences with a JSON file
(you can, for example, create a scratch org
with person accounts enabled without having
to contact support), and created with the
Salesforce CLI. Once created, metadata and
code can be pushed to them and pulled from
them with another CLI call. They’re ephemeral
- they’ll be deleted after a maximum of 30
days, but their durations can be configured
at creation.

Scratch orgs are designed to be short-lived
and used for day-to-day development.
Their main purpose in a DX-based process
is to replace dev sandboxes.

The process is as follows:

•	 When picking up a new work item, create
a new branch in your source control repo,
and a new scratch org, and push your
metadata and code from your branch

•	 Make changes to the scratch org,
modifying metadata and code, regularly
syncing your changes back to your branch
in version control

•	 When the work item is complete, delete
the scratch org and merge the feature
branch into the master (or equivalent)
branch for the repository

This approach gives you a clean starting
point each time you start work on a new
feature or fix.

Scratch orgs can also be used for:

Testing a feature: as a test engineer,
grab a feature branch, create a new scratch
org, and push the source to the scratch org

Automated testing: on commit to a branch,
create a scratch org and deploy the source
to it, running all unit tests and reporting
on failure

Salesforce DX - an overview

Scratch orgs

https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs.htm

11 of 31

A new metadata format

For those familiar with Ant and the Force.com
migration tool, the APIs used by Salesforce
DX are the same. Anybody who’s used the
Force.com migration tool will know that the
structure of metadata returned by those APIs
isn’t ideal for working from version control.

Items like custom objects and profiles
can get really big, which poses a few
different problems:

•	 Working with large XML files is difficult,
just by virtue of their size

•	 Multiple users changing the same files
makes conflicts more likely, and failing
to resolve these effectively can yield
corrupt XML

•	 Although not best-practice, it’s not
uncommon for these items to contain
a variety of different changes according
to different features in active development
in a particular org - this means when
pushing changes, developers need to edit
these XML files by hand to incorporate
only the specific changes they want
to push in that deployment or commit

To address this, DX uses a slightly modified
folder structure that breaks up some of the
larger, more complex metadata items (for
example custom objects and translations)
into subcomponents, providing a good
workaround to these problems. It’s worth
noting, however, that because it uses the
same underlying APIs there are still problems
this mechanism doesn’t address. It also
comes with the added benefit of loosening
some of the restrictions on folder structure,
allowing you to introduce subfolders to
organise your Apex classes into, for instance.

A new metadata format

The Salesforce CLI

The Salesforce CLI is essentially an iteration
on the Force.com migration tool.

It incorporates:

•	 Everything that already existed in the
Force.com migration tool, particularly
around retrieving and pushing metadata
from and to an org

•	 Commands for translating Force.com
migration tool-format metadata
to DX- format metadata and vice versa

•	 Commands for managing the features
of DX, specifically scratch orgs
and second-generation packages

•	 Commands for importing and exporting
data from and to JSON files

The Salesforce CLI

https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_source_file_format.htm
https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_source_file_format.htm
https://releasenotes.docs.salesforce.com/en-us/winter18/release-notes/rn_sfdx_cli.htm

•	 A handful of other administrative
commands to conveniently perform
tasks programmatically, including running
unit tests

Using the Salesforce CLI instead of the Force.
com migration tool allows you to control the
new DX-introduced features like scratch orgs
and second-generation packaging, and lets
you use the new DX-introduced metadata
format discussed in the previous section.

Visual Studio Code plugins

Salesforce has announced that the Force.
com IDE - a set of tools to bring Salesforce
support to the Eclipse IDE - has effectively
been deprecated, and future first-party
development effort in this area will follow
popular opinion and target Visual Studio
Code. Eclipse is a fine, open-source IDE, and
a few years back was the obvious choice
to extend with support for new languages.
While it’s still popular amongst certain
demographics (Java developers, for instance),
the rise of html-based desktop IDEs over the
past few years has caused a fairly dramatic
drop in its popularity.

Salesforce has followed the popular trend
in shifting their development effort to the
lighter-weight and increasingly popular
VSCode. VSCode’s powerful plugin model
means Salesforce has been able to put
together a full-featured IDE in a short period
of time. This model also leaves it open
to further extensibility by the community.
If you’re adopting a new IDE for Apex
development, then VSCode should be your
first port of call.

Visual Studio Code
plugins

12 of 31

Interest over time

https://developer.salesforce.com/blogs/2018/02/salesforce-extensions-vs-code.html
 https://releasenotes.docs.salesforce.com/en-us/winter18/release-notes/rn_sfdx_vscode.htm

13 of 31

Second-generation packaging

DX introduces a new packaging model.
Various terms are used throughout the
online literature - although there’s some
nuance, packaging 2.0, second-generation
packaging (2GP), unlocked packages and
developer-controlled packages (DCP) are
all used broadly interchangeably to refer
to the same concept. For convenience,
we’ll stick to “second-generation packaging”
to refer to the overall feature, and
“unlocked packages” to refer to the
packages themselves.

Unlocked packages are designed
to solve two main problems:

1. Many orgs’ metadata is organized as
a “happy soup” - the org is essentially
a collection of metadata without structure.
Unlocked packages provide a mechanism
to encapsulate independent pieces of
functionality, making the overall structure
of an org easier to reason about and
understand, and more importantly easier
to deploy. Encapsulation, separation of
concerns and single responsibility have
long been tenets of good software
development practice, and unlocked
packages facilitate this.

2. Rather than deploying metadata between
environments as a zip file with a package.
xml, unlocked packages are designed to be
individually deployable units of functionality,
built from source control, and deployable
to your org. They’re versioned, meaning
you can track which org has which version
of which feature and you can express
dependencies on other unlocked packages

in a package’s definition. Once a package
version has been tested in one environment,
deploying to a downstream environment is
as easy as telling Salesforce to deploy that
same package to another org. This has the
result of being a more repeatable and reliable
mode of deployment.

The result of this is that much more
functionality will be delivered by package,
and it’ll become more rare to deploy raw
metadata between environments. You’ll
add features to orgs by installing packages,
and when building out new features or
extending existing ones, you’ll convert these
to versioned packages and deploy them to
downstream environments.

Once an unlocked package is installed in an
org, its metadata acts as though it belongs
to that org and can be modified or deleted like
any other metadata, with the caveat that any
changes made to that package’s metadata in
the org will be overwritten if a new version is
installed. This discourages teams from making
substantial or long-standing changes in
production, preferring making changes and
fixing bugs in the package itself, creating
a new version, and pushing that downstream
via an established release process.

Note that at time of writing, this feature is
in beta. It can be risky to adopt beta features
aggressively, because there’s still a chance
they won’t make general availability, but it’s
stabilized a lot over the past few months and
we don’t see this feature disappearing any
time soon. We’ll discuss the practicalities
of adoption of second-generation packaging
in a later section.

Second-generation
packaging

https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp.htm

14 of 31

Dev Hub orgs Every scratch org needs a home, and that’s where Dev Hubs come
in. A Dev Hub is just a standard org that can act as a container
for scratch orgs. In order to create a scratch org, you’ll first need
to convert one of your existing orgs to a DevHub, or sign up for a
Dev Hub trial org. Once you have a Dev Hub org, you can use the
Salesforce CLI to start spinning up scratch orgs, and you can view
and manage any existing scratch orgs you’ve created via the Dev
Hub org’s UI. The recommendation today is to stick to only one Dev
Hub org, and usually production.

Dependency
API

With Summer ‘18 came the pilot of a new dependency API. This
is a new feature of the tooling API, and exposes relationships
between metadata components. With this API, you can write SOQL
queries that not only list metadata components referenced by a
specific component, but also go in the other direction and list which
components reference a specific component. Not all metadata types
are covered by this API yet, its output config options are limited to
plaintext and JSON, and it’s still in pilot, but it’s already showing a
lot of promise. Although Gearset has its own dependency tracking
features, this API will be particularly useful for third parties building
developer tooling for Salesforce devs and admins.

Dev Hub orgs

Dependency API

https://developer.salesforce.com/docs/atlas.en-us.sfdx_setup.meta/sfdx_setup/sfdx_setup_enable_devhub.htm
https://developer.salesforce.com/promotions/orgs/dx-signup
https://www.youtube.com/watch?v=zsZDEL6oO0Q&feature=youtu.be&t=13m1s

15 of 31

DX for Salesforce DevOps

So if you’re looking to build a DevOps process around DX, or you’re
looking to transition your existing process to DX, what’s the best
place to start?

The lure of “best practice”

When we speak with Salesforce teams,
especially those struggling with increasing
complexity, there’s often a desire to adopt a
“best practice” approach to DevOps and their
software development lifecycle.

We think this is a mistake. There are really
three key elements to adopting DevOps
on your team:

•	 Identifying problems you want to solve

•	 Version control as source of truth

•	 Adhering to the process across
the whole team

It may sound obvious, but if you’re looking
to adopt or further DevOps in your business,
the best starting point is to identify the
problems you’d like to fix with your existing
process - only then can you design a plan
to address them.

Perhaps your developers are treading on
each other’s toes by working in the same
environment, or changes are being made
directly in production then getting

overwritten. Perhaps your deployments
are taking days to complete, or you’re
conducting them out of hours due to their
fragility. Whatever the problems may be,
DevOps is the remit and responsibility of
teams themselves, so charge your admins,
developers, business analysts, and release
managers with identifying the challenges
they’re facing.

We think there’s a spectrum of best practice
and you should implement the parts that are
going to deliver the best immediate return on
investment, while still laying a foundation to
build upon. Start with the problems causing
you the most acute pains, and incrementally
address subsequent problems in turn.
In building Gearset, we’ve adopted some
cutting-edge practices that allow us to
release a new version of the app in just
a click, and we do this multiple times a
day. We didn’t start out this way - when
we encountered a problem that our process
didn’t handle well, we refined our tools. In our
experience, teams who take this approach,
rather than an all-or-nothing approach, are
less likely to end up in the “nothing” camp
twelve months down the line.

DX for Salesforce DevOps
The lure of "best
practice"

16 of 31

Tools Characteristics Benefits

Level 1
Beginner

None /
Change
Sets

Before starting their DevOps
journey, teams typically work
directly in production orgs,
or in sandboxes with infrequent
releases to production.

Each subsequent level of maturity
confers a variety of benefits over
this level.

Level 2
Novice

Ant / DX
CLI, Git,
Change
Sets

Developers work in shared
sandboxes and periodically store
a subset of metadata in version
control as a backup.

Version control is the single most
important tool in the adoption
of DevOps practices. Introducing
Git as a backup for a subset of
your metadata helps familiarise
your team with the basics of
version control.

Level 3
Practitioner

DevOps tool
with change
monitoring,
Ant / DX
CLI, Git

Developers work in independent dev
sandboxes on a subset of metadata.
Common production changes are
cloned back to version control with
metadata rollback via a DevOps
tool or Git.

Making version control your source
of truth unlocks the benefits
of DevOps. Combine your work
in separate feature branches during
development instead of during
a stressful release window.

Level 4
Leader

CI-based
DevOps
tool, Git,
DX CLI
(optional)

Admins and developers use a CI
workflow with Git as the source of
truth for the majority of metadata,
automated unit testing and
continuous delivery to integration,
plus single-click repeatable releases

Adding automation unleashes
a whole raft of benefits. You’ll
integrate changes via your version
control system, continuously
deploying to staging environments
with regular, reliable releases
to production.

Level 5
Innovator

CI-based
DevOps
and backup
tool, Git,
DX CLI
(optional)

Teams use a CI workflow with
continuous delivery to integration,
single-click repeatable production
deployments, and regular metadata
and data backups with a frequently-
tested restore process.

In addition to the benefits of regular
automated releases, automated
backups prevent data loss with
rapid restore times and compliance
with data privacy.

The DevOps maturity matrix

To help guide decision making around DevOps adoption, we use a maturity model
to help understand where teams are right now and where they stand to benefit the most:

The DevOps maturity
matrix

Org

Scheduled
backup

Dev

Scratch org

IDE

Org

Dev

Org

Scheduled
backup

Dev

Scratch org

IDE

Org

Dev

You can identify your current level of maturity
by looking at the sorts of challenges faced
by teams at each stage, as well as the sorts
of tools they’re using. Once you’ve identified
the stage of maturity and curated a list
of pressing challenges you’d like to resolve,
you can put the tools and processes in place
to tackle those problems and progress
to the next stage of maturity.

The single most impactful change that
Salesforce teams can make on their way to
implementing a solid DevOps workflow is to
adopt source control as the source of truth.

First, it’s worth defining “source of truth”
in this context. It means that if you discover
a discrepancy between your org and the
metadata in source control, you trust source
control and update your org to match it.
It means that if your org were to disappear
tomorrow, you could spin up a new org based
solely on what you have in source control.
This can be a conceptual leap for teams that
don’t use source control at all, and arguably

Version control as the source of truth

so too for teams that currently use git only
for metadata backup.

Adopting source control is too broad a topic
to cover completely in this whitepaper.
If you’re yet to make the leap to adopting
source control, take a look at our “Version
control for Salesforce” whitepaper for a
detailed exploration of the topic. Regardless
of which source control system you adopt,
or how your team is planning to take
advantage of it, the move to using source
control as the source of truth is the most
impactful change you can make in adopting
Salesforce DX and a DevOps mindset.

The stand-out characteristic here
is the relationship between maturity, and
segregation of concerns and automation.
Generally speaking, teams with more
mature DevOps processes will have more
environments, keeping ongoing development
work more segregated, and this is enabled
by a heavier reliance on automation.

Org as source of truth Version control as source of truth

Version control as the
source of truth

17 of 31

https://trailhead.salesforce.com/en/modules/sfdx_dev_model/units/sfdx_dev_model_neworganization
https://gearset.com/assets/version-control-for-salesforce-whitepaper.pdf

18 of 31

Salesforce DX for the whole team

In this whitepaper we’ve explored what
Salesforce DX has to offer and all the power
that it’s unlocking for teams, but we think
Salesforce made a rare marketing misstep
when it referred to it as the Salesforce
Developer Experience. It isn’t.

It should be positioned as the Salesforce
Builder Experience, as effective adoption
and implementation of a DevOps strategy
requires full involvement from the whole team.
It comes back to the “source of truth” concept
that we’ve talked about throughout - the
benefits of source-driven development are
only unlocked when everybody works from
a single source of truth.

If critical team members like business analysts
and admins are excluded from the process
then you’ll face inevitable friction between the
process that they’re following and the process
that others on the team are using.

Most guides to Salesforce DX are written from
the point of view of developers - specifically
those that are comfortable using CLI tooling.

The challenge with viewing the problem
exclusively through that lens is that the
learning curve for a CLI-based workflow
is steep, and it dramatically erodes the
clicks-not-code change velocity that made
Salesforce beloved by businesses in the first
place.

The good news is that Salesforce has built
DX as an enabling platform and made it simple
for third-party DevOps leaders like Gearset
to build atop the concepts and APIs to
provide seamless source driven development
for the whole team. In fact, Gearset exposes
a full suite of DX features that developers are
benefitting from in a familiar clicks-not-code
UI, allowing low and no-code developers
and admins to follow an identical process
to developers on their teams, without the
learning curve. All of this has been made
possible by the API and CLI-based approach
taken by the DX team.

Salesforce DX for the
whole team

19 of 31

An example DX-based
DevOps process
Let’s walk through what DX-based DevOps might look like
for a team falling under “Trailblazing” in the maturity matrix.

Source
control

Development
workflow

The team will be using git, the industry de facto standard, for source
controlling their metadata. They’ll be using a repository hosted by
one of the main providers, usually either GitHub, Bitbucket or GitLab,
though it’s possible they’ll be using an on- premise flavor, hosting
elsewhere, or self-hosting.

There will be a clear source control-based workflow for making
changes to the production org that all team members, whether
developer, architect, admin, or business analyst will adhere to. This
will usually be based on the popular Gitflow model, although in most
cases we see users adopting a simplified version of this model.

An example DX-based
DevOps process

An example DX-based
DevOps process
Source control

Development workflow

https://github.com
https://bitbucket.org/product
 https://gitlab.com
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

20 of 31

Source-driven flow

At a high level, the
process is as follows:

•	 All relevant metadata is in source control - this will start out
as a small subset centered around custom objects and Apex
classes, but will grow as the team becomes more comfortable
with the process and, crucially, as the release cadence increases

•	 When an admin or a developer commences work on a feature,
they’ll first create a branch from the master branch of the git repo

•	 The team should also maintain a scratch org definition file within
the git repo, so that developers and admins can spin up a scratch
org of a specific configuration, and push the source-controlled
metadata to it on commencing feature work as necessary

•	 The developer or admin then makes changes to scratch org and
metadata on disk, and keeps them in sync using their
preferred tooling

•	 When the feature or change is complete, the developer or admin
creates a pull request, then assigns this requestfor review
to a colleague

•	 When the change has been reviewed and any necessary
modifications made, the branch should be merged back
to master, signifying that the feature is ready for release

To make this process as effective as possible, it’s important to
break feature work up into the smallest possible deliverable slices.

•	 Smaller changes are necessarily easier to release - the likelihood
of hitting an unintended edge case is dramatically reduced

•	 The likelihood of challenging merges caused by developers
working in the same areas of the codebase are reduced

•	 It increases the robustness and reliability of the release process
by exercising it regularly

•	 The “ceremony” in releasing is reduced - it becomes commonplace

Releasing small
features regularly
has myriad benefits:

Source-driven flow

Sandbox StagingAdmin

Main

Feature branch

Feature branch

Dev IDESandbox

Create branch

Merge branch

Commit

UAT/QA Prod

CI job

Release

Create pull request

A source-driven workflow for admins and developers

Create branch Pull request Merge branch

CI job Release

Commit

21 of 31

22 of 31

Unlocked packages

 This workflow can be modified slightly
to take advantage of the new packaging
features in pilot in Summer. As we’ve already
discussed, unlocked packages let you
bundle and deploy features and parts of your
application much in the same way you would
if you were releasing it on the AppExchange.

Source-driven workflow

SandboxDev

Main

Package
.xml

Prod

Staging

SandboxDev

Main
Prod

StagingDev hub
VI

sfdx force:package:install

VI

sfdx force:package:install

VI

VI
Create
branch

Feature VI
(versioned package)

Unlocked
package

Rather than have a single repository
containing the metadata representation
of your whole org, and deploying changes
by pushing metadata from your git repo
directly to your org, you instead create
a series of packages representing features
of your org, and push these as versioned
packages. Once a versioned package
is created, you can install this into your
org in much the same way you would
an AppExchange package.

Create branch Package

Unlocked packages

22 of 31

23 of 31

SandboxDev

Main

Package
.xml

Prod

Staging

SandboxDev

Main
Prod

StagingDev hub
VI

sfdx force:package:install

VI

sfdx force:package:install

VI

VI
Create
branch

Feature VI
(versioned package)

Unlocked
package

Source-driven workflow with unlocked packages

Rather than orgs consisting of large quantities
of metadata, under this model they’re
composed from a variety of packages.
A package might be shared across several
orgs or projects, or it could be a feature
specific to a particular org. There are several
benefits to this approach:

•	 Composition is a long-standing best
practice of software development, and
separating features and functionality into
different packages forces better software
design practices

•	 It’s easy to understand at a glance
the state of an org by looking at which
versions of which packages are installed
- this provides a high-level description
of what functionality is available in
an org, without having to look at the
metadata itself

•	 Installing and upgrading features is easy
- there’s no longer a need to consider
which individual metadata items need
to be deployed, just tell Salesforce to
install the package and all the constituent
components will deployed as a single unit

•	 The risk to deploying a feature is reduced
- installing a package is more reliable than
pushing raw metadata

Create branch Package Feature VI
(versioned package)

24 of 31

However, this is no panacea. Along with the
new packaging approach come far- reaching
software design implications. Although
this encourages best practices, to execute
this approach properly requires strong
architectural decision making, and liberal
use of enterprise patterns. When relying
on packages, teams must carefully consider
where responsibilities lie between packages,
and perhaps more importantly, what the
boundaries between packages look like.
Minimising coupling between units of code
is a long-standing software development
problem, but this is made more challenging
by the relative independence and isolation
of different unlocked packages.

Moreover, cross-cutting concerns can be
difficult - changes that need to be made
across several packages have to be carefully
made depending on the degree of isolation
between packages, and re factoring tools,
the likes of which developers on some other
platforms can benefit from, aren’t available
yet. Decomposing existing large orgs into
packages can be very difficult too - metadata
can be heavily interdependent and teasing
apart these dependencies is challenging.

Ultimately, many of the problems of
unlocked packages are similar to those of
deconstructing traditional SaaS applications
into a microservices architecture -
application-spanning changes are difficult,
communication boundaries must be clearly
defined, and communication channels must

Unstructured org Org with unlocked packages

MANAGED PACKAGE 1

MANAGED PACKAGE 2

MANAGED PACKAGE 3

UNLOCKED PACKAGE 1

UNLOCKED PACKAGE 2

UNLOCKED PACKAGE 3

UNSTRUCTURED
METADATA

Org with unlocked packages
—

Unstructured org
—

MANAGED PACKAGE 1

MANAGED PACKAGE 2

MANAGED PACKAGE 3

UNSTRUCTURED
METADATA

MANAGED PACKAGE 1

MANAGED PACKAGE 2

MANAGED PACKAGE 3

UNLOCKED PACKAGE 1

UNLOCKED PACKAGE 2

UNLOCKED PACKAGE 3

UNSTRUCTURED
METADATA

Org with unlocked packages
—

Unstructured org
—

MANAGED PACKAGE 1

MANAGED PACKAGE 2

MANAGED PACKAGE 3

UNSTRUCTURED
METADATA

25 of 31

be abstract and flexible. As a result, teams
adopting packages require very strong and
seasoned technical leads, and a well-defined
plan for integrating changes made by less
technically experienced team members into
the development process. Our advice is to
approach unlocked packages with caution
at this early stage.

Given this feature is still in pilot, adoption
is currently fairly limited and the functionality
is still shifting over time, though it’s started
to settle more recently. On the upside, it’s yet
another opportunity for incremental adoption
- if you’re interested in using unlocked
packages, our advice is to start small with
greenfield features or projects, rather than
attempting to adopt wholesale across your
existing orgs.

Tools
There are a variety of tools your team might
use to accomplish this. For the more technical
developers, the following would be common:

•	 VSCode
•	 The git CLI / GitHub desktop client /
SourceTree / GitExtensions / GitKraken

•	 The Salesforce CLI
•	 Scratch orgs

For the less technical developers, there
are fewer options. It’s certainly possible for
developers of all technical experience levels
to learn to use the above tools, though the
learning curve is notoriously steep for those
inexperienced with command line tooling.
The other option is to adopt a tool like Gearset,
which allows users to work with scratch orgs,
live orgs, and git repos via a graphical UI.

Release workflow and release automation

Once code has been merged, this will
be released to various environments by
an automated or semi-automated process.
Firstly, there will be a number of permanent
environments that might include staging,
UAT, and production. Changes to master
will be continuously deployed to staging.
Once changes have been verified in staging,
it will be possible to deploy those changes
to downstream environments like UAT
and production in just a few clicks.

Tools
There are a couple of different ways
to achieve this:

1.	 An off-the-shelf or open source
continuous integration server like
Jenkins, in conjunction with the git CLI,
the Salesforce CLI, and custom scripts
written by the development team to
handle common deployment tasks.

2.	 An all-in solution like Gearset that handles
interfacing with git, running continuous
integration jobs, and deploying metadata
to orgs and scratch orgs

Release workflow and
release automation

26 of 31

The temptation here might be to reach for the flexibility of an off-the-shelf
CI server, but these are generally far more configurable than is required for
Salesforce teams. CI servers are designed to be sufficiently flexible to run
a variety of different types of job, most of which aren’t necessary when
Salesforce is the target platform, and this additional configurability comes
with a burden of responsibility. Take, for instance, a popular example that
uses a combination of the git CLI, the Salesforce CLI and an off-the-shelf
CI solution, by Salesforce MVP Daniel Stange*.

The configuration file* for the CI job is as follows:

There’s a lot of complexity in this config, and
any team managing this sort of process on
their own will need to understand and modify
these sorts of configurations semi-regularly,
on top of administering their automation
solution, version control system, updating
scripts to accommodate changes in the DX
CLI, and so on. Using a Salesforce-focused
solution like Gearset has the benefit that this
complexity is handled for you.

* https://github.com/dstdia/ForceAcademy18/blob/master/.
circleci/config.yml

26 of 31

https://github.com/dstdia/ForceAcademy18/blob/master/.circleci/config.yml
http://*
https://github.com/dstdia/ForceAcademy18/blob/master/.circleci/config.yml
https://github.com/dstdia/ForceAcademy18/blob/master/.circleci/config.yml

27 of 31

Because of test coverage requirements, and the possibility
of breaking unit tests by making changes directly in production,
the team will automatically run unit tests across environments
on a fixed cadence. Tests will run when pushing changes from
environment to environment regardless, but depending on your
release cadence it’s possible for tests to begin to silently fail, and
for these failures to first be discovered at deploy time. Discovering
test failures late in the release process can be costly.

By running tests on a regular basis, either with a scheduled job
configured on your CI server running tests via bespoke script,
or with a tool like Gearset, and notifying the team on test failure,
errors can be caught closer to implementation time, which makes
them easier to fix.

Testing

Monitoring

Backup

Particularly while a new process is being put in place, old habits
may dictate that changes are occasionally made directly in
production. This subverts the ideology of “version control as source
of truth”, and causes developers to tread on each other’s toes and
changes to be lost. As such, the team will monitor their production
environment for unexpected changes. On detection of unexpected
changes, team members can then identify the cause of the change
and the person responsible, and decide whether to revert the
change or roll the change back into source control. At present
the best way to do this is using Gearset.

The final piece of the puzzle is maintaining a full history of the state
of the org, both for audit and for disaster recovery. Source control
itself solves this problem, and tools like Gearset bring the added
benefit of automated and selective rollback.

Testing

Monitoring
Backup

28 of 31

Challenges

Firstly, there can be a steep learning curve
for even technically experienced teams.
There are lots of moving parts with a variety
of diverse tools, and anybody unfamiliar with
CLI tools may find themselves out of their
depth. That said, it’s not insurmountable,
and there are third-party tools available that
circumnavigate this issue.

With a steep learning curve and diverse tools
comes a certain degree of overhead.

Piecing together CLI tools, maintaining
continuous integration configurations
and servers, and the writing and curation
of bespoke scripts to perform tasks like
running tests and deploying changes requires
expertise and time. While DX is still under
active development with several features still
in pilot, the task of maintaining this is likely
to be more onerous as the commands, APIs,
and features evolve over time. At its core,
it becomes an issue of prioritisation
- do we add more value to our organizations
by curating piecemeal DevOps solutions,
or by adding the next feature, unique and
crucial to the success of the business?

As things stand today, DX goes a long way towards delivering
the tools you need to build a cutting-edge DevOps process.
It’s not without its shortcomings, though.

This isn’t a trade-off of process vs.
pragmatism, but build vs. buy. You can spend
your development dollar building bespoke
DevOps solutions, but if your DevOps process
doesn’t afford you a unique competitive
advantage over other organizations, then this
isn’t the best allocation of your budget. In this
case, DevOps ROI is best realised by adopting
a turnkey solution like Gearset, that builds
on top of DX.

Finally, arguably the biggest challenge
is that of piecing together tools that allow
the whole team work with a single process.
In our experience, the entire team needs to
adopt a DevOps mindset in order to realize
the benefits of this new approach. As soon
as one rogue developer subverts the process
and starts making changes in production,
problems start to creep back in, the value
of the process falls into question, and teams
revert to old habits. The easiest way to
avoid this is to avoid homegrown piecemeal
solutions that are ever evolving to address
the next gap, and instead adopt a complete
DevOps solution like Gearset, designed
for whole teams and built on top of the
foundations laid by the DX team.

Challenges

29 of 31

Conclusion

Release management for Salesforce has evolved into DevOps,
and with the help of DX, has never been easier. Unfortunately,
that’s not saying much - robust release management is something
the platform had never been optimized for, and DX is the start
of a journey.

DX certainly goes a long way to alleviating
some long-standing pains for teams of
seasoned developers. Teams matching this
description, however, are fairly thin on the
ground, and this isn’t surprising - Salesforce
has long-since been the bastion of clicks-
not-code and the champion of the citizen
developer. This means that for the vast
majority of teams, any DevOps strategy
will necessarily rely on third-party tools in
conjunction with these new and improved
first-party DX-based building blocks for the
foreseeable future.

But perhaps the most important way to look
at DX right now is as a facilitating platform.
The APIs the DX team are building are
not only directly useful for teams to piece
together their own DevOps workflows,
but they lay the groundwork for third parties
to build complete, accessible, solutions
on top of. As time goes on, the combination
of improved first-party developer tooling and
tools built by the wider ecosystem will ensure
that no team is left in the DevOps dark ages,
and admins and developers alike will
be building and releasing more effectively
than ever before.

Conclusion

30 of 31

About Gearset
This whitepaper was written by the team behind Gearset,
the release management tool for Salesforce. The Gearset
team have decades of experience in development and
deployment across multiple platforms, including SQL
Server, Oracle, .NET, Azure, and Salesforce. We helped
build some of the leading deployment tools used by 91%
of the Fortune 100 to run their release management and
achieve world-class continuous delivery. We’re a trusted
Salesforce partner and our sole mission is to make
development on Salesforce ingeniously simple. We built
Gearset to solve the challenges Salesforce teams face
with release management. If you’re looking for a tool which
perfectly complements your new version controlled release
process, you can find more information on Gearset and
start a free 30-day trial at https://gearset.com or contact
us at team@gearset.com.

About Gearset

https://gearset.com
mailto:team%40gearset.com?subject=

31 of 31

	Introduction
	Who is this whitepaper for?
	Why Salesforce DX?
	What is DevOps?
	DevOps and Salesforce

	Salesforce DX - an overview
	Scratch orgs
	A new metadata format

	The Salesforce CLI

	Visual Studio Code plugins
	Second-generation packaging
	Dev Hub orgs
	Dependency API

	DX for Salesforce DevOps
	The lure of "best practice"
	The DevOps maturity matrix
	Version control as the source of truth
	Salesforce DX for the whole team

	An example DX-based DevOps process
	Source control
	Development workflow
	Source-driven flow
	Unlocked packages
	Release workflow and release automation
	Testing
	Monitoring
	Backup

	Challenges
	Conclusion
	About Gearset

