
1

A practical guide to implementing
Git-based release management

Version control
for Salesforce

2

Contents

Introduction ..3

Who is this whitepaper for? ..3

What is version control?..4

Definitions ..5

The path to version control .. 7

Production development .. 7

Sandbox development ..8

Version control development ...9

The benefits of version control in Salesforce development .. 10

Getting started with version control: introducing Git .. 12

Service providers .. 12

On-premises vs hosted .. 13

A recommended development model for getting started ... 14

Overview .. 14

The development model ... 15

Branch management ... 17

Dealing with hotfixes ... 17

The hotfix model ... 18

What metadata to version control ...20

Start with a controlled subset .. 21

Managed packages ...22

Finding the right deployment solution ...23

For developers ...23

For admins and release managers ...24

For team leads and architects..24

Conclusion ..25

About Gearset ..26

3

Introduction
Version control is one of the most powerful tools development
teams can leverage on their path to effective release management,
yet its adoption in the Salesforce ecosystem is surprisingly low.
In this whitepaper we’ll examine how version control works, the
benefits of version control over in-org development, and introduce
a best-practice model for introducing version control
in your business.

Who is this whitepaper for?
From the fundamentals of version control through to a detailed
release management model for getting started with Git, this
whitepaper contains best-practice advice for developers,
administrators, team managers, and technical architects alike.

It’s for anyone involved with the administration, development, maintenance, or management
of Salesforce environments, looking for ways to improve the cadence, simplicity, reliability,
and auditability of their release management.

4

What is version control?
Version control is a well-established concept in most software
languages and platforms, and is one of the key enablers for
efficient Agile development. At its heart, version control focuses
on one core concept: tracking changes to files over time.

Version control becomes an enabler for development teams to work
faster and smarter, by:

•	 Being a single ‘source of truth’ for the team.

•	 Enabling parallel development streams by allowing developers to work
on changes in isolation without the environment changing underneath them.

•	 Providing tools to identify and resolve file conflicts.

•	 Maintaining a full audit trail for every stage of the development cycle.

•	 Facilitating collaboration and code review.

•	 Making it easy to maintain and deploy different versions of code across test,
staging and production environments.

Salesforce teams who use version control release higher quality code more frequently,
introduce fewer bugs, maintain better reporting and visibility, and have a better ability
to roll back changes. This translates to a better relationship with their end users,
and faster project delivery.

As the Salesforce modules on Application Lifecycle Management put it:

“Using version control is considered to be a general best
practice for software development...and ensures a quality
development process.”

5

Definitions
Before we go any further, let’s define a few terms we’re going
to use throughout this whitepaper.

Version control / source control systems provide a mechanism
for tracking changes to files. For software projects such
as Salesforce, this almost always means representing
configuration changes as text files (Apex / XML) and tracking
changes to those text files over time. The terms version
control and source control are often used interchangeably.

Version control /
source control

Repositories

Branches

Commits

Repositories are the containers version control systems use
to store files and track changes against them. Repositories
also provide a mechanism for teams to share changes, review
each other’s work, and resolve conflicts. Repositories are
based around a central master store of files, with a number
of branches containing new features in development.

Branches provide independent working environments
for developers where new features can be built and tested
in isolation from other development work. Branches are part
of the everyday development process with version control.
Branches allow developers to work in parallel, review others’
work, and control when changes are released for testing.

Commits are collections of changes which a developer
adds to a branch to record their development progress.
As a developer works, the version control system
automatically tracks changes they make to files. When
a portion of the feature is complete, the developer submits
a collection of changes, accompanied by an informative
description, as a commit to their branch.

6

Merging is the process of integrating changes from one
branch to another, including into main. Merging is typically
done when a feature is ready for user testing in Salesforce
orgs, and usually involves code review by other members
of the development team.

Merging

Pull requests /
merge requests

Pull requests / merge requests are initiated when
a developer wants to merge a branch. They provide a quality
and compliance gating process before new changes are
integrated into the main code base or released to Salesforce
environments. All changes can be easily compared, and code
reviewed and commented on by peers. The final approval and
merge is completed by someone other than the developer
who worked on the changes. The terminology for this process
varies from version control provider to version control
provider, but the concept is the same.

Source-driven workflow

SandboxDev

Main

Staging UAT/QA Production

Create branch

Commit

CI job

Release

Package

7

Production development

Initially, changes are made directly in the production environment. This can
be a quick and efficient way of working after the initial implementation of Salesforce
if the business doesn’t have sufficient customization of their organization to require
a development team, or if costs need to be kept to a minimum, as there’s no need
for additional sandboxes.

While simple, this is a risky approach. Changes are being made to the live
organization that’s being used by the business on a daily basis. Bugs and unfinished
features can cause significant disruption, and it’s difficult to identify and fix issues.
Parallel development streams are very challenging, with developers or admins
commonly overwriting each other’s changes. There are also fundamental limitations
in terms of the changes that can be made — new Apex classes can’t be created
in a production environment, for example.

The path to version control
Salesforce powers thousands of businesses around the world,
from small non-profits to global technology giants. Despite this
diverse customer base, we’ve observed that many businesses
follow a similar evolution in their release management, motivated
by the need to manage the increasing complexity in both their
teams and environments. This evolution falls into three broad
categories: production development, sandbox development,
and version control development.

8

Sandbox development

To avoid the issues with working in production, teams commonly move to using
a number of sandboxes to build and test code prior to release into production.
This can vary from a single sandbox to a range of developer, partial and full
sandboxes with increasing complexity and data.

Development in sandboxes provides many advantages over development
in production. Developers and admins can begin to work in parallel development
streams, reducing the chances of stepping on each other’s toes. Changes can
be tested prior to release to production, reducing the risk of bugs and making
it more likely a feature will meet the business needs of the end user. Apex code
can be written and tested before being migrated to production, allowing for a much
greater degree of customization of the environments. The segregation of different
environments also allows for more refined change control. As a result of these
benefits, many teams quickly move to the sandbox development model, adapting
the process as the team size and environment complexity grows.

Sandbox development doesn’t solve all the issues of a production-centric approach,
however. Code conflicts and accidentally overwriting changes remain a pain point,
and there’s limited audit capability to track why and when changes were made.

Production

Dev Dev

Admin Admin

Production development flow

Typical production development flow

9

Version control development

The benefits of sandbox development and the ease of adoption means most teams have
moved on to this approach. Despite its advantages, its inherent challenges limit how far
teams can go on their path to Agile development. Over time, the lack of automation, limited
change tracking, interfering development streams, and complex environment management
drive many teams to look for a better solution. For many, version control is at the heart
of such a process.

The sandbox development flow also introduces several new challenges which teams
must contend with. Parallel development streams across multiple environments mean
it’s common for sandboxes to get out of sync. This limits the effectiveness of testing,
and can increase the risk of duplicated work. Identifying which features are ready
for testing, and which components should be included in each release often becomes
a manual, spreadsheet-based task. In the event of a rollback, it can be difficult to know
exactly what the most recent stable state was.

The biggest challenge for many, however, is simply migrating the metadata effectively
between the multiple environments. The complexity of Salesforce metadata, combined
with the steep learning curve of the command-line based deployment tools can become
a serious time drain on the release team.

Developer sandbox
Development

Developer sandbox
Development

Partial copy sandbox
Integration testing / QA

Full sandbox
UAT / Staging

Production
Production

Dev

Admin

Sandbox development flow

10

The main branch of a repository becomes the source of truth
for tracking changes and resolving conflicts. Everyone in the
development team can see at a glance what code is currently
ready for release and what is being worked on in branches.
This simplifies releases and ensures the whole team is aware
of what is currently live.

Single source
of truth

Manage code conflicts
and deployment risk

Version control systems bring tooling that can help teams
identify and manage conflicts early — during merging, rather
than at deployment time. This means by the time they deploy,
they’re already confident that they’re pushing exactly what
they want. The importance of this can’t be overestimated.
With in-org development, finding and resolving conflicts would
only happen at the point of release to sandbox or production.
Release windows are often tight, and unexpected delays
can have big impacts on the business. Using version control,
teams can handle conflicts when merging branches,
and the result is ready to be deployed completely as-is
to any subsequent environments for testing. This happens
as a natural part of the development workflow, rather than
a week or two down the line when it’s being deployed.

Enable parallel
development streams

By allowing each developer to work in their own branch,
multiple development streams can easily be maintained.
Teams no longer have to worry about another user
accidentally modifying an item they’re working on, or trying
to disentangle their changes in a shared sandbox. This also
helps separate feature work from hotfixes.

The benefits of version control
in Salesforce development
Version control has a range of benefits over in-org development
which makes it a great choice for small and large development
teams alike.

11

Maintain a full
audit trail

Through commits, all changes are annotated and associated
with a team member so the whole team knows who did what
and why. This can be invaluable if they ever need to go back
to review historical work or bring new team members up
to speed, and is a requirement of some compliance regulations.

Reduce bugs
through code review

During the merge process, all changes should have an
associated assignee so they can be reviewed before being
pushed into production. This peer review of code enables
teams to find and fix bugs prior to release and increases
overall code quality.

Deploy consistently
across environments

Branches provide stable release points to quickly and reliably
propagate the same set of changes to staging, UAT, and finally
production environments. Teams can rely on the knowledge
that they’ve thoroughly tested exactly what will be released,
without the need for manually updated deployment tracking
documents.

Simplify rollback In the event of a rollback, it’s easier to revert a merged branch
and return an org to its previous state. Through the detailed
history of changes, and the merging process, teams can then
go back in time to understand why things went wrong, and
identify who knows most about each part of the system to
resolve the issues.

Release faster Version control encourages an increased release cadence,
deploying smaller number of changes more frequently
than is traditionally possible with in-org development. With
a well-designed process which doesn’t slow teams down, this
reduces risk while enhancing the speed of project delivery.

12

Service providers

Although there are many service providers for Git-based version control, there
are three clear market-leaders:

All three provide a mature and effective platform for Salesforce development. Which
provider to use will come down to the specific needs of the team and personal preference.

Getting started with
version control: introducing Git

The first step to implementing version control is choosing which
system to use — a few common types are Perforce, Subversion
(SVN), Mercurial and Git.

Deciding which system has a big impact on the process and tools available to the team.
Luckily, it’s a simple choice for Salesforce development, as Git has established itself
as the de facto version control system. Git is used by millions of developers around
the world and is the recommended system for all Salesforce development teams.

GitHub Bitbucket GitLab

https://github.com/
https://bitbucket.org/
https://about.gitlab.com/

13

On-premises vs hosted

Most version control systems have the option of running either as a hosted
service, where the provider manages the hosting and provision of the software
for you, or running locally on your own systems, known as on-premises.

Hosted version control provides the greatest flexibility, stability, and ease of setup.
On-premises has the advantage of more discrete data control, but that’s offset
by the additional cost, configuration, and infrastructure investment required
for setup and maintenance.

For the vast majority of Salesforce teams, the hosted version of a version control
system is the best choice. The established Git providers are trusted by some
of the largest companies in the world and have extremely robust data protection
and uptime policies. If opting for an on-premises solution, it’s worth considering
the additional costs and how access to hosted systems, such as Salesforce
or Gearset, will be managed through corporate firewalls.

14

A recommended development
model for getting started

There’s no one way to build a Git-based development
and release process. We outline a range of branching strategies
in this article, with an assessment of their pros and cons.
For teams that are fairly new to version control,
we recommend the following model.

Overview

Our model has been designed with three key guiding principles in mind:

Simplicity Keeping things simple not only improves development
speed, it also makes maintenance and training much easier.

Practicality Our model is tried and tested through years of development
experience, yet flexible enough to be tailored to the needs
of different businesses.

Designed
for Salesforce

The model is designed to cater for the nuances
of development on the Salesforce platform.

https://gearset.com/blog/choosing-the-right-git-branching-strategy-for-your-team/?[…]g-form-q4-23&utm_content=vc-whitepaper-git-branching-strategies

15

At a more practical level, there are a number of guidelines to consider when
implementing the model:

•	 New features and bug fixes follow the same development flow.

•	 Main should always be deployable, and is always treated as the single source of truth.

•	 New changes should be deployed out to your testing environments as soon as possible
after merging.

•	 Branches should be used to represent a single deliverable request from the business, such
as a new feature, user story, or bug fix. Include the minimum viable number of changes
in any one branch and nothing more.

•	 Frequent, small releases are better than infrequent, complex ones. The longer a branch
exists without getting merged, the greater risk for merge conflicts and
deployment challenges.

•	 Never automate deployments to production — human overview is always advised.

•	 Keep things lean to remove barriers to adoption. A process is no good if no one adheres to it.

The development model

This approach built around a feature branch model is often a good starting point for teams
adopting Git. Of course, each business is different, and the model is designed to provide
flexibility for teams to customize to suit their specific regulatory or business needs.

Sandbox StagingAdmin

Main

Feature branch

Feature branch

Dev IDESandbox

Create branch

Merge branch

Commit

UAT/QA Prod

CI job

Release

Create pull request

Git development flow

16

•	 Create a new developer sandbox or refresh an existing
one from your main branch or production environment.
This gives all developers a consistent starting point.

•	 Create a new branch from main on the developer’s your
local machine. Name it descriptively, either referencing
your user story or the bug being fixed (e.g. `feature/user-
story` or `bugfix/fix-account-visibility-for-sales-profile`).

•	 Publish the branch to your central repository.

•	 Make changes in the sandbox and/or local IDE. Run tests
locally on a regular basis to check for regressions.

•	 Commit changes to the branch periodically. Publish to
the central repository, giving visibility to other developers.

•	 Open a pull request when ready. Have at least one other
reviewer check the changes, helping to catch errors
or suggest improvements. Reviewers’ notes will form part
of the audit trail for these changes.

•	 Merge the branch into main when ready.

•	 A CI job detects the new changes in main, and
automatically deploys them out to an integration testing
sandbox (usually a partial copy) for rapid testing.

•	 Submit another pull request with fixes for any test failures
or requested changes.

•	 Deploy the changes from main to UAT and/or QA
environments. The exact environments will vary based
on company and team size, but your final pre-production
environment should be at least a partial copy sandbox
that’s in sync with production.

•	 After final approval, push the changes from main
to production. Releases to production are best kept
as a manual process for appropriate oversight.

•	 Deployment reports from the final release should be
stored with any user stories to add an extra level of audit
trail for business owners.

Step 3
Release

Step 2
Development

Step 1
Environment setup

17

Dealing with hotfixes

Branch management

There are two approaches to managing branches created during development.

No matter how good the release model, changes will sometimes
be made outside of the defined process. An urgent bug fix
might be created directly in the production org, or an admin
may make a small configuration change in a UAT org through
the Salesforce UI.

The ability for users to rapidly make these small changes is one of the strengths
of Salesforce and allows businesses to respond to user requests more quickly than
is typically possible with other platforms. Rather than attempting to stop users working
this way, a good release process should have an effective way of quickly identifying
these hotfixes and incorporating them back into the defined development model.
Tracking hotfixes in this way avoids them being overwritten during the next scheduled
feature release.

Branches are deleted
from the central
repository as soon
as they are merged
into main.

Branches are deleted
upon deployment
to production.

1.

2.

This keeps your repository simple and easy to maintain.
If a bug or change is discovered during testing, the branch
can either be reverted through your version control
system, or new commits pushed from the local developer
environments. This works well for smaller changes which
are released more frequently.

This makes it easier to make changes to a feature while
it goes through testing, but care should be taken to delete
the branch after final release to avoid redundant branches
cluttering up the repository. This approach works well
for larger, more complex releases which may be on a slower
release cadence.

18

This lightweight process is designed to rapidly incorporate any changes
made outside of the standard release flow back into version control.

Staging

Main

Hotfix branch

UAT/QAProdAdmin

Create branch

Merge branch

Commit

CI job

Create pull request

Git hotfix flow

The hotfix model

19

Step 1
Capture changes

•	 Create a new branch from main. The branch should
be named something descriptive to make identification
of the hotfix easy (e.g. `hotfix/prod-account-
inaccessible-to-sales- profile`).

•	 Pull the changes from the org into the new hotfix branch.

•	 Open a pull request to merge the branch back into main.
Teams should ensure that all changes are reviewed by
at least one assignee prior to merging. The notes and
feedback during a pull request also produce an audit
trail if the changes need to be revisited in the future
— especially useful for hotfixes which are generally
undocumented and may not have an accompanying
user story.

•	 Delete the hotfix branch after merging.

•	 A CI job will now automatically push the changes into your
integration sandbox.

Step 2
Propagate changes

•	 After testing in integration, manually deploy the changes
to your other environments. As any non-developer
environments should be based off main, there should
be no additional conflicts beyond those identified
in the steps above.

•	 Notify developers working in feature branches of the
change so they can assess any impact on their current
work. Usually, any conflicts will be resolved at the pull
request phase, but developers may wish to rebase their
branches if the changes directly affect their
ongoing work.

Gearset’s change monitoring tool gives teams an automated way of tracking
changes to environments (e.g. UAT/QA/Prod), making it easy to identify hotfixes
and incorporate them into the source of truth.

https://gearset.com/blog/automated-change-monitoring/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=long-form-q4-23&utm_content=vc-whitepaper-change-monitoring

20

What metadata
to version control

When starting out with version control, it can be tempting
for teams to immediately put all of their metadata into
the repository.

There are a few problems with this approach:

•	 While the majority of metadata can successfully be managed in version control, some
types don’t lend themselves to version control due to automated changes made
by Salesforce. These will always be out of sync with the repository.

•	 Some metadata can be undeployable once it has been removed from an org,
due to Salesforce API limitations.

•	 Continuous integration jobs are much easier to manage with a subset of metadata.

•	 The high volume of metadata can be overwhelming to begin with, and the burden
of its management can slow down the development cycle.

•	 Typical development flows will not affect every metadata type, so there is little
point in version controlling them.

Version control is designed to help teams create, track, and deploy new features.
It should’nt be seen as a backup of your Salesforce environments for disaster
recovery purposes.

21

Start with a controlled subset

Small, regular deployments and rapid testing of new features through continuous
integration are core parts of the model. The key to enabling this approach in Salesforce
is starting with a limited subset of metadata which can be deployed with a high degree
of reliability. This will allow the team to build confidence in the process during its adoption.

A common mistake when designing a release process is to add too many components
at once. Each time a deployment challenge is encountered, it erodes confidence
in the process and reduces the desire to pursue this approach. Starting with the most
important subset of metadata means teams will start seeing success immediately,
and any challenges faced when expanding the process to incorporate more metadata
types will be more manageable.

Ultimately the process needs to work for the team. if it’s a huge effort to set up before
any benefits are realized, there’s a risk that the process will fall by the wayside. If a team
can start seeing even small benefits quickly, then it’ll gather steam of its own accord.

An example of the metadata types a team might start adding to their
version control and continuous integration jobs might be:

•	 Apex class

•	 Apex component

•	 Apex page

•	 Apex trigger

•	 Custom object

•	 Global value set

•	 Profile

•	 Standard value set

Once the team has a reliable end-to-end release flow with this set, they can begin
adding additional metadata types as required.

https://gearset.com/blog/salesforce-continuous-integration-in-gearset/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=long-form-q4-23&utm_content=vc-whitepaper-continuous-integration
https://gearset.com/blog/salesforce-continuous-integration-in-gearset/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=long-form-q4-23&utm_content=vc-whitepaper-continuous-integration

22

Managed packages behave differently to most other metadata.
As a rule, there are two approaches to dealing with managed packages
in version control:

•	 If the packages are not being modified beyond the original install, only the Installed
package type needs to be added to version control. This is because the installed
package effectively provides everything an org needs to ensure that managed
packages are in sync between source and target.

•	 If modifications are being made to the package, both the Installed package
and the modified metadata must be added to version control to allow the team
to track changes. Given the number of changes associated with managed packages,
it’s advisable to treat them as distinct features, tracked in their own branches.
This will help teams spot changes being made through package upgrades versus
other feature development work.

Managed packages

23

Finding the right
deployment solution

The simplicity and effectiveness of the model is predicated
on being able to quickly move changes between Salesforce
and version control, including via automated continuous integration
jobs. Picking the right deployment solution, with a balance
of functionality and ease of use, is crucial to realizing the key
benefits of version-controlled deployments. Gearset has features
which enable all members of the team to work more effectively.

For developers

•	 Compare repositories and orgs to see the line-level XML differences.

•	 Granular deployment control to manage exactly what is committed to source control.

•	 Ability to save and share changes with other developers prior to release.

•	 Automatic package creation and dependency analysis, including for destructive
changes, to remove manual steps and speed up testing and deployments.

•	 Commit changes to branches directly through the tool.

•	 Ability to trigger CI jobs off commits to version control.

•	 Automated org test execution / regression testing to proactively find and fix test
failures across all environments before they become blockers at deployment time.

•	 Unlimited connections to orgs and no packages to install for easy setup
and maintenance across multiple development environments.

https://gearset.com/solutions/deploy/version-control/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=long-form-q4-23&utm_content=vc-whitepaper-vc-solution-page

24

For admins and release managers

•	 Quickly visualize what’s different between orgs with change highlighting.

•	 Commit changes to version control from within the tool, without having to learn
the intricacies of the version control system or command line.

•	 Metadata dependency analysis to simplify and speed up the creation of valid
deployments, with ability to work around common deployment blockers.

•	 Automatic change tracking and alerting for multiple orgs to track hotfixes proactively.

•	 Shared history and status of CI jobs and deployments across the team.

•	 Deployment rollback in case of accidental changes to orgs.

For team leads and architects

•	 Dashboard view of the status of all Salesforce environments and tests.

•	 Detailed reporting and full audit trail of activity for every deployment.

•	 Effective team collaboration which enhances workflows without getting in the way.

•	 Easy to master, with little or no training required.

•	 Usable by all team members, regardless of experience in Salesforce or version control.

25

Conclusion

Version-controlled development is a powerful tool for Salesforce
release teams looking to improve their release management.
Through its centralized change tracking, conflict resolution, and
peer review, version control enhances the quality and speed with
which new features can be developed and released to end users
when compared to traditional sandbox development.

Limitations of the first-party tooling and a general lack of familiarity with good processes
have historically limited the adoption of version control by Salesforce teams, but in recent
years, third-party tools such as Gearset have filled that gap and opened up version control
as a viable option for development teams of all sizes.

What next?
To see how Gearset can help your team adopt version control for Salesforce, get in touch
to book a demo with our DevOps experts.

Book a demo

https://gearset.com/book-a-demo/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=vc-whitepaper-links&utm_content=vc-whitepaper-book-demo

26

About Gearset
Gearset is the leading Salesforce DevOps platform, with
powerful solutions for metadata and CPQ deployments,
CI/CD, automated testing, sandbox seeding and backups.
It helps Salesforce teams apply DevOps best practices
to their development and release process, so they can
rapidly and securely deliver higher-quality projects.

Thousands of Salesforce professionals use Gearset,
and have shipped millions of deployments, run billions
of automated tests, and backed up billions of records. With
inbuilt intelligence that solves the fundamental challenges
of Salesforce DevOps, Gearset is a uniquely reliable solution
trusted by more than 2000 companies, including McKesson,
Accenture and IBM.

https://gearset.com/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=long-form-q4-23&utm_content=vc-whitepaper-homepage

	Introduction
	Who is this whitepaper for?
	What is version control?
	Definitions
	The path to version control
	Production development
	Sandbox development
	Version control development

	The benefits of version control
in Salesforce development
	Getting started with
version control: introducing Git
	Service providers
	On-premises vs hosted

	A recommended development
model for getting started
	Overview
	The development model
	Branch management

	Dealing with hotfixes
	The hotfix model

	What metadata to version control
	Start with a controlled subset
	Managed packages

	Finding the right
	deployment solution
	For developers
	For admins and release managers
	For team leads and architects

	Conclusion
	About Gearset

