
1 of 22

A best-practice guide
to improving your code quality

DevOps for Salesforce

Static code
analysis for Apex

2 of 22

A little scene-setting: who is this whitepaper for?

People building on the Salesforce platform are a mix of admins, developers, admins-
cum-developers, and developers-cum-admins. So, unless you’re a pure admin who
never touches Apex, this paper is for you.

While Apex development is practiced in many forms, you might fit one of these
archetypes:

Highly-disciplined developers
Those who learned computer science
and refined their trade in other languages
with mature development frameworks and
techniques. For whatever reason, you’re
coding in Apex now.

Under-time-&-budget-pressure
developers
Regardless of your training, you've learned
the Salesforce Apex idioms (e.g. always
bulkify, no callouts in triggers, etc.) but
otherwise you jam out the Apex to get your
stories done as quickly as possible. You feel a
little dirty about your work product and would
like to leave a better legacy for yourself and
others.

The experienced sole practitioner
You've been doing Apex for some time and
know you could write better software but
need a push from your tools to get you going.

The occasional developer
You only do sporadic Apex amongst your
primarily admin-type work (process builder
and visual flow) but you have a feeling that
you'll be doing more Apex in the future.
Regardless of who you are, static code
analysis can help you.

So, you want to write better Apex?

Software development is a craft and, like any craft, one can always
get better at it. In this whitepaper we’ll discuss how static code
analysis as part of your development lifecycle can help you craft
better software.

3 of 22

About the authors

Gearset is a DevOps solution designed for everyone. Whether
you’re looking to adopt an Agile release process, improve developer
collaboration or speed up project delivery, Gearset’s easy metadata
and data deployments, integration with Salesforce DX and powerful
automation can help.

Eric Kintzer has been working on Salesforce projects
since 2007 as an all- singing, all-dancing developer, architect, and
admin for high tech companies including Yahoo! and VMware. He is a
passionate user of Salesforce enterprise patterns including Andrew
Fawcett's Force.com Enterprise Architecture and ApexMocks. He is
currently Salesforce Architect at Helix, a marketplace for direct-to-
consumer DNA-based products.

Eric Kintzer

Gearset

4 of 22

What is Apex and why do I need static code analysis? ... 5

Your toolkit for better Apex development ... 6

What is static code analysis? ..7

Static code analysis with Gearset ... 8

The signal and the noise .. 9

Using Gearset to customise your rule set ..10

The five lines of defence ...12

 1: The IDE ...13

 2: Gearset deployments ..13

 3: Code review ..13

 4: Gearset change monitoring ...14

 5: Continuous integration (CI) with Gearset ...14

Summary ..15

Further reading ...16

Contents

5 of 22

What is Apex and why do I need
static code analysis?

Apex is a programming language designed to let you add and
interact with data in Salesforce, and tailored to give organizations
more flexibility in their customization of the Salesforce platform.

Apex already comes with a built-in unit test framework to examine functionality
and test code coverage, so you may be thinking “why do I need static code
analysis as well?”

Unit tests are important because they help demonstrate intended behaviour
and functional correctness of your code. They can also make your code easier
to change by encouraging you to write more loosely coupled, modular code,
and by providing an early warning of any bugs that might creep in when making
changes. Code coverage is a great way to ensure that the bulk of your Apex is
under test.

While unit tests and code coverage have the important side-effect of forcing
you to write more maintainable code, static code analysis explicitly formalizes a
series of coding patterns, practices, and heuristics into a series of rules that can
be periodically run against your code to assess its quality. By automating static
code analysis and building it into your development process, you can identify
style violations, bugs, and even more serious performance and security-related
issues as you develop, long before they make it into production.

6 of 22

Your toolkit for better Apex
development

Static code analysis is just one tool towards writing better Apex.
In fact, it’s not the first tool you should consider. Briefly, these other
methods and tools will have higher payoff than static code analysis
alone, so be sure to add them to your arsenal too.

1) Patterns
The best software exploits well-known software patterns. Trigger frameworks
are an example that are familiar to many Apex developers. An even more
powerful set of patterns, based on Martin Fowler’s Separation of Concerns, is
the Force.com Enterprise Architecture patterns featured in Salesforce Trailhead
here and here as well as in book form.

2) Thorough regression test suites
Test methods that only do code coverage without asserts should be eschewed.
Follow SFDC best practices for testing - positive, negative, and bulk testing;
testing under different runAs users ; etc.

3) Reusable libraries
Move org-independent methods or code fragments into independent classes,
shared across the code and between tests. Look for libraries on GitHub that do
useful things so you don’t have to reinvent infrastructure.

7 of 22

In general, rulesets like code style, design and error prone will broadly apply across
a whole family of languages, whereas best practices, performance and security will
be targeted to your specific environment, in this case Apex code for Salesforce. Failure
to heed performance and security violations in particular could lead to future breaks,
outages, or worse.

There are a number of tools you can use to implement static code analysis as part
of your development process, such as Checkstyle or PMD. Gearset uses the open
source PMD library that has static code analysis rulesets for many languages, including
Apex. Quoting from the PMD GitHub website:

What is static code analysis?

Static code analysis reviews your source code to detect common
bad practices, catch bugs, and make sure development adheres
to coding guidelines. Most static code analysis tools define a series
of rulesets that identify different categories of issue in your code,
for example:

Best practices Enforcing generally accepted Apex best practices

Code style Enforcing a specific coding style

Design

Error prone rules

Performance Detecting constructs that are either broken, extremely
confusing, or prone to runtime errors

Security Detecting potential Apex/SFDC security flaws

Detecting constructs that are either broken, extremely
confusing, or prone to runtime errors

Helping you discover design issues

8 of 22

“PMD is a source code analyzer. It finds common programming
flaws like unused variables, empty catch blocks, unnecessary
object creation, and so forth.

Additionally it includes CPD, the copy-paste-detector. CPD finds
duplicated code in ... Salesforce.com Apex and Visualforce.”

If you’re working in Gearset, these Apex rulesets can be customised and applied
to each of your deployments as well as your continuous integration (CI) jobs and
org monitoring setup. But more on this later.

Static code analysis with Gearset

Gearset is an end-to-end DevOps solution, designed to make
release management on the Salesforce platform really easy. One
of the ways it helps is by automatically running static code analysis
at the key stages of your development process.

On top of this, Gearset also has a variety of great deployment features, including
easy metadata and data deployments, deployment rollback, continuous integration,
automated change monitoring, and full support for Salesforce DX.

The following sections show you how you can use Gearset’s static code analysis
to help you write and maintain better Apex.

9 of 22

Looking at an existing org is useful if you are inheriting the org from others. If you’re
a consultant, the scope of the report’s results might justify a rate increase!

But seriously, the static code analysis results need to be examined in detail. Some
ruleset violations might be benign or not that important to your org. Other violations
might look serious but the repair effort might not warrant the cost.

The signal and the noise

To benefit most from static code analysis, you’ll want it embedded
throughout multiple stages of your development cycle. You’ll
probably start off by examining the static code analysis results in
your PROD org to see “how bad is it?” (or, if optimistically-minded,
“how good is it?”). A typical org will give back a list of ruleset
violations roughly proportional to the amount of deployed Apex.

Benign violation examples:

• Code style violations like if then
else without braces is a matter for
philosophical debate in some quarters.

• Violations in the unmanaged packages
you’re using are likely a matter for the
unmanaged package developer, and you
should raise an issue with the package
on GitHub.

Serious-but-costly-to-fix examples:

Standard cyclomatic complexity; to
paraphrase United States Supreme Court
Justice Potter Stevens in a 1964 obscenity
case, “you’ll know it when you see it”. The
method will be indecipherable to inspection,
but it could be some fundamental piece of
critical business logic and refactoring it could
run serious risks of breaks.

10 of 22

Gearset’s customizable static code analysis provides a mechanism
to help screen out the noise, and there are a number of settings
that you can configure to build the most appropriate rule set.

As a blunt instrument, you can enable or disable specific rules
entirely.

Using Gearset to customise your
rule set and screen out the noise

For a more fine-grained approach, you can choose how you want to define
the severity of a rule if a violation is detected. More serious violations can be
categorized and flagged as errors, while others can just be tagged as warnings
in the results summary.

11 of 22

For categories like complexity, you can also specify values to determine
the precise level at which the rule will fire. For example, for complexity rule
ExcessiveClassLength , you can specify the maximum class length (in lines) that
can be allowed.

Using these settings, you can fine tune the levels to find the right balance
between warnings and errors to meet your team's needs. For cases when
Gearset’s granularity proves too coarse, you may need to go in to individual
classes or lines of code and use the PMD warning suppression techniques.

Bottom line: remove the noise from the analysis so only violations important to
you and your team/org get highlighted. This will be an iterative process.

12 of 22

The five lines of defence

Once you’ve removed the noise, your team will need a workflow
for addressing the remaining static code analysis violations.

Salesforce teams are increasingly adopting a git-based development process. As Gearset have
previously written about in their version control whitepaper, this workflow often looks something
like the model below:

We’ve broken down this model into five key
stages along the release pipeline, highlighting
how and where static code analysis (referred
to as SCA in the diagram) fits in.

These stages include development in a local
IDE, pushing commits to feature branches,
and deploying approved changes from master
to production. Of course, each business
is different, so you can tailor this model to fit
the needs of your team.

Sandbox StagingAdmin

Main

Feature branch

Feature branch

Dev IDESandbox

Create
branch

Merge
branch

Commit

Static code
analysis

UAT/QA Prod

CI job

Release

Create pull
request

1

2

3

4

5

13 of 22

1: The IDE
If you’re using an IDE with PMD plugins, you
can run the PMD analyzer as you develop.
IDEs like Visual Studio, Illuminated Cloud, and
the Welkin Suite identify violations and let you
suppress noisy PMD warnings.

2: Gearset deployments
Whenever you prepare a deployment between
your orgs or branches, Gearset will run static
code analysis for you automatically.

If any issues are detected, Gearset will flag
them, tell you which rules have been violated,
and point you towards the offending code.
You can then go back and fix your Apex,
refresh the comparison, and deploy. Over
time, more and more of your codebase will
become violation-free

3: Code review
If you’re doing code reviews, you can inspect
the static code analysis report for that
deployment as part of your checklist. Include
a link to the report in your pull request.
Perhaps a team lead is required to sign off
on any violations to make sure your team is
maintaining best-practice coding standards.

Dev IDE

SCA

Sandbox

IDE

SCA

Feature Branch Feature Branch

Sandbox

SCA

Main

Feature
branch

SCA

PR

Merge

1

2 2

3

14 of 22

4: Gearset change
monitoring
Gearset can also monitor changes and code
quality in your orgs. You can monitor any org,
but the most relevant ones are usually staging
and production. Monitoring jobs run daily to
give you a detailed audit trail of every change
made in your org, while the code analysis
provides consistent feedback on the quality of
your Apex. Your team will be able to monitor
the changing state of your orgs to make sure
your coding standards are being met. You
could even use the analysis results to set up
quarterly team goals to reduce the violation
counts by some percentage.

5: Continuous integration
(CI) with Gearset
For more advanced DevOps, you can set up
a CI job within Gearset to deploy from source
control to your orgs. The CI job will detect
the new changes in your repository and
automatically deploy them to your integration
testing sandbox (usually a partial copy) for
rapid testing. Static code analysis will be
performed as part of this CI job, giving your
team the chance to continuously check and
monitor changes and call attention to any rule
violations.

Main

SCA

Release

Prod

Main

SCA

CI job

Staging

4

5

15 of 22

Summary

Consistently improving Apex as part of your release management process can be
tricky. By using a DevOps tool like Gearset, your team can automate this process,
and continuously review code throughout each stage of development. Gearset’s
configurable static code analysis lets you screen out benign violations so you can
build the most appropriate rule set for your team and monitor what matters most
in your orgs. With code analysis built into Gearset’s deployment flow, as well as
monitoring and CI jobs, you can make sure your Apex is continuously developed
to a high standard as changes are pushed down the release pipeline.

It’s just one piece of the puzzle for writing better Apex, but
static code analysis plays a crucial role in monitoring code
development across your Salesforce environments. By
regularising coding style and practices across teams, you
can ultimately benefit from greater productivity and fewer
breaks and outages.

16 of 22

Further reading

Want to know more about static code analysis?
Take a look at these resources to get started:

Apex Enterprise Patterns — Trailhead module
https://trailhead.salesforce.com/en/modules/apex_patterns_sl

Change monitoring — Gearset app
https://app.gearset.com/change-alerts

Checkstyle — development tool
http://checkstyle.sourceforge.net/

Continuous integration — Gearset app
https://app.gearset.com/continuous-integration

Feature walkthrough — for Gearset’s static code analysis
https://docs.gearset.com/feature-walkthroughs/static-code-analysis

Force.com — Enterprise Architecture
https://andyinthecloud.com/2017/04/01/force-com-enterprise-architecture

Gearset whitepaper — a guide to version control for Salesforce
https://gearset.com/assets/version-control-for-salesforce-whitepaper.pdf

PMD — Apex rulesets
https://pmd.github.io/pmd-6.2.0/pmd_rules_apex.html

PMD — source code analyser tool
https://pmd.github.io/

Salesforce — Apex Developer Guide
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_dev_guide.htm

https://trailhead.salesforce.com/en/modules/apex_patterns_sl
https://app.gearset.com/change-alerts
http://checkstyle.sourceforge.net/
https://app.gearset.com/continuous-integration
https://docs.gearset.com/feature-walkthroughs/static-code-analysis
https://andyinthecloud.com/2017/04/01/force-com-enterprise-architecture
https://gearset.com/assets/version-control-for-salesforce-whitepaper.pdf
https://pmd.github.io/pmd-6.2.0/pmd_rules_apex.html
https://pmd.github.io/
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/ apexcode/apex_dev_guide.htm

17 of 22

	What is Apex and why do I need static code analysis?
	Your toolkit for better Apex development
	What is static code analysis?
	Static code analysis with Gearset
	The signal and the noise
	Using Gearset to customise your rule set and screen out the noise
	The five lines of defence
	1: The IDE
	2: Gearset deployments
	3: Code review
	4: Gearset change monitoring
	5: Continuous integration (CI) with Gearset

	Summary
	Further reading

